首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Platinum(II)-catalyzed cyclization sequence of aryl alkynes via C(sp3)-H activation: a DFT study
Authors:Li Zhi-Feng  Fan Yanzhong  DeYonker Nathan J  Zhang Xiting  Su Cheng-Yong  Xu Huiying  Xu Xianyan  Zhao Cunyuan
Institution:MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.
Abstract:The mechanism and intermediates of hydroalkylation of aryl alkynes via C(sp(3))-H activation through a platinum(II)-centered catalyst are investigated with density functional theory at the B3LYP/6-31G(d) for H, O, C; 6-31+G(d,p) for F, Cl; SDD for Pt] level of theory. Solvent effects on reactions were explored using calculations that included a polarizable continuum model for the solvent (THF). Free energy diagrams for three suggested mechanisms were computed: (a) one that leads to formation of a Pt(II) vinyl carbenoid (Mechanism A), (b) another where the transition state implies a directed 1,4-hydrogen shift (Mechanism B), and (c) one with a Pt-aided 1,4-hydrogen migration (Mechanism C). Results suggest that the insertion reaction pathway of Mechanism A is reasonable. Through 4,5-hydrogen transfer, the Pt(II) vinyl carbenoid is formed. Thus, the stepwise insertion mechanism is favored while the electrocyclization mechanism is implausible. Electron-withdrawing/electron-donating groups substituted at the phenyl and benzyl sp(3) C atoms slightly change the thermodynamic properties of the first half of Mechanism A, but electronic effects cause a substantial shift in relative energies for the second half of Mechanism A. The rate-limiting step can be varied between the 4,5-hydrogen shift process and the 1,5-hydrogen shift step by altering electron-withdrawing/electron-donating groups on the benzyl C atom. Additionally, NBO and AIM analyses are applied to further investigate electronic structure changes during the mechanism.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号