首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Joule heating induced transient temperature field and its effects on electroosmosis in a microcapillary packed with microspheres
Authors:Kang Y  Yang C  Huang X
Institution:School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Republic of Singapore 639798. mcyang@ntu.edu.sg
Abstract:The Joule heating induced transient temperature field and its effect on the electroosmotic flow in a capillary packed with microspheres is analyzed numerically using the control-volume-based finite difference method. The model incorporates the coupled momentum equation for the electroosmotic velocity, the energy equations for the Joule heating induced temperature distributions in both the packed column and the capillary wall, and the mass and electric current continuity equations. The temperature-dependent physical properties of the electrolyte solution are taken into consideration. The characteristics of the Joule heating induced transient development of temperature and electroosmotic flow fields are studied. Specifically, the simulation shows that the presence of Joule heating causes a noticeable axial temperature gradient in the thermal entrance region and elevates a significant temperature increment inside the microcapillary. The temperature changes in turn greatly affect the electroosmotic velocity by means of the temperature-dependent fluid viscosity, dielectric constant, and local electric field strength. Furthermore, the model predicts an induced pressure gradient to counterbalance the axial variation of the electroosmotic velocity so as to maintain the fluid mass continuity. In addition, under specific conditions, the present model is validated by comparing with the existing analytical model and experimental data from the literature.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号