首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Strong stacking between FH--N hydrogen-bonded foldamers and fullerenes: formation of supramolecular nano networks
Authors:Li Chuang  Zhu Yuan-Yuan  Yi Hui-Ping  Li Chang-Zhi  Jiang Xi-Kui  Li Zhan-Ting  Yu Yi-Hua
Institution:State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai, China.
Abstract:The stacking interactions between FH--N hydrogen-bonded foldamers 1-3, bis-foldamer 4, and tris-foldamer 5 and C(60) and C(70) are described. Compound 4 contains two folded units, which are connected by an isophthalamide linker, whereas 5 has a C(3)-symmetrical discotic structure, in which three folded units are connected by a benzene-1,3,5-tricarboxamide unit. UV/Vis, fluorescence, and NMR experiments have revealed that the foldamers or folded units strongly stack with fullerenes in chloroform. The (apparent) association constants of the respective complexes have been determined by a fluorescence titration method. The strong association is tentatively attributed to intermolecular cooperative fluorophenylpi and solvophobic interactions. A similar but weaker interaction has also been observed between an MeOH--N hydrogen-bonded foldamer and fullerenes. AFM studies have revealed that the surfaces of 3 and 4 show fibrous networks, while the surface of 5 shows particles. In sharp contrast, mixtures of 3 and 4 with C(60) have been shown to generate thinner separated fibrils, whereas a mixture of 5 and C(60) produces honeycomb-like nano networks, for which a columnar cooperative stacking pattern is proposed. The results demonstrate the usefulness of FH--N hydrogen-bonded folded structures in the construction of nanoscaled materials.
Keywords:fluorine  foldamers  fullerenes  hydrogen bonds  nanostructures  stacking interactions
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号