首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Semiclassical study of quantum coherence and isotope effects in ultrafast electron transfer reactions coupled to a proton and a phonon bath
Authors:Venkataraman Charulatha
Institution:The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India. vcharu@imsc.res.in
Abstract:The linearized semiclassical initial value representation is employed to describe ultrafast electron transfer processes coupled to a phonon bath and weakly coupled to a proton mode. The goal of our theoretical investigation is to understand the influence of the proton on the electronic dynamics in various bath relaxation regimes. More specifically, we study the impact of the proton on coherences and analyze if the coupling to the proton is revealed in the form of an isotope effect. This will be important in distinguishing reactions in which the proton does not undergo significant rearrangement from those in which the electron transfer is accompanied by proton transfer. Unlike other methodologies widely employed to describe nonadiabatic electron transfer, this approach treats the electronic and nuclear degrees of freedom consistently. However, due to the linearized approximation, quantum interference effects are not captured accurately. Our study shows that at small phonon bath reorganization energies, coherent oscillations and isotope effect are observed in both slow and fast bath regimes. The coherences are more substantially damped by deuterium in comparison to the proton. Further, in contrast to the dynamics of the spin-boson model, the coherences are not long-lived. At large bath reorganization energies, the decay is incoherent in the slow and fast bath regimes. In this case, the extent of the isotope effect depends on the relative relaxation timescales of the proton mode and the phonon bath. The isotope effect is magnified for baths that relax on picosecond timescales in contrast to baths that relax in femtoseconds.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号