首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geometrical structure and nonlinear response variations of metal (M = Ni2+, Pd2+, Pt2+) octaphyrin complex derivatives: A DFT study
Authors:Nasarul Islam
Institution:Department of Chemistry, U.G.C. Centre of Advance Studies in Chemistry, Guru Nanak Dev University, Amritsar, India
Abstract:Nonlinear optical response of designed organometallic complexes of Ni2+, Pd2+, and Pt2+ metal ions with octaphyrin (OP) as ligand were explored by using DFT at CAM-B3LYP/6–311G++(d, p)/LANL2DZ/DEF2SV level of theory. The geometries of these organometallic complexes were studied in terms of effect on molecular framework by metal ion and substituent groups. The optimized geometry of free ligand displays that one of the four pyrrole rings orients out of plane to reduce the steric hindrance. The effect of the substituents on the geometry was found more prominent in the Ni2+-OP complexes. The calculations reveal enhancement in the values of dipole moment and hyperpolarizability on introducing electron withdrawing and electron donating groups in ligand framework with maximum enhancement in case of Pt2+-OP derivatives. In this study no regular trend was observed for the HOMO and LUMO energies with the second-order hyperpolarizability of M2+-OP complexes. However, we have observed that the excited-state properties calculated by using TD-DFT correlate well with the second-order hyperpolarizability values and the dependence was rationalized in terms of two-level model. Thus, from overall calculations we have observed that the designed organometallic complexes display higher polarizability and hyperpolarizability values and can be effective candidates for nonlinear response.
Keywords:Hyperpolarizability  porphyrin  electrophilicity  bond length alternation  transition dipole moment
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号