首页 | 本学科首页   官方微博 | 高级检索  
     检索      


${{ \mathcal H }}_{\infty }$ synchronization of chaotic Hopfield networks with time-varying delay: a resilient DOF control approach*
Authors:Xin Huang
Abstract:This paper focuses on the issue of resilient dynamic output-feedback (DOF) control for ${{ \mathcal H }}_{\infty }$ synchronization of chaotic Hopfield networks with time-varying delay. The aim is to determine a DOF controller with gain perturbations ensuring that the ${{ \mathcal H }}_{\infty }$ norm from the external disturbances to the synchronization error is less than or equal to a prescribed bound. A delay-dependent criterion for the ${{ \mathcal H }}_{\infty }$ synchronization is derived by employing the Lyapunov functional method together with some recent inequalities. Then, with the help of some decoupling techniques, sufficient conditions on the existence of the resilient DOF controller are developed for both the time-varying and constant time-delay cases. Lastly, an example is used to illustrate the applicability of the results obtained.
Keywords:Hopfield network  Chaos synchronization  Time delay  Dynamic output feedback  
点击此处可从《理论物理通讯》浏览原始摘要信息
点击此处可从《理论物理通讯》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号