首页 | 本学科首页   官方微博 | 高级检索  
     


Flow of colloidal suspension and irreversibility analysis with aggregation kinematics of nanoparticles in a microchannel
Authors:S. SINDHU  B. J. GIREESHA
Affiliation:Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, Shivamogga 577451, Karnataka, India
Abstract:The current exploration focuses on the ethylene glycol (EG) based nanoliquid flow in a microchannel. The effectiveness of the internal heat source and linear radiation is reflected in the present investigation. The estimation of suitable thermal conductivity model has affirmative impact on the convective heat transfer phenomenon. The examination is conceded with the nanoparticle aggregation demonstrated by the MaxwellBruggeman and Krieger-Dougherty models which tackle the formation of nanolayer. These models effectively describe the thermal conductivity and viscosity correspondingly. The dimensionless mathematical expressions are solved numerically by the Runge Kutta Fehlberg approach. A higher thermal field is attained for the Bruggeman model due to the formation of thermal bridge. A second law analysis is carried out to predict the sources of irreversibility associated with the thermal system. It is remarked that lesser entropy generation is obtained for the aggregation model. The entropy generation rate declines with the slip flow and the thermal heat flux. A notable enhancement in the Bejan number is attained by increasing the Biot number. It is established that the nanoparticle aggragation model exhibits a higher Bejan number in comparision with the usual flow model.
Keywords:nanoparticle aggregation  nanoliquid  microchannel  slip parameter  heat flux  
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号