首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Self-avoiding random walk with multiple site weightings and restrictions
Authors:Krawczyk J  Prellberg T  Owczarek A L  Rechnitzer A
Institution:Department of Mathematics and Statistics, The University of Melbourne, 3010, Australia. j.krawczyk@ms.unimelb.edu.au
Abstract:We introduce a new class of models for polymer collapse, given by random walks on regular lattices which are weighted according to multiple site visits. A Boltzmann weight omegal is assigned to each (l+1)-fold visited lattice site, and self-avoidance is incorporated by restricting to a maximal number K of visits to any site via setting omegal=0 for l>or=K. In this Letter we study this model on the square and simple cubic lattices for the case K=3. Moreover, we consider a variant of this model, in which we forbid immediate self-reversal of the random walk. We perform simulations for random walks up to n=1024 steps using FlatPERM, a flat histogram stochastic growth algorithm. We find evidence that the existence of a collapse transition depends sensitively on the details of the model and has an unexpected dependence on dimension.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号