Plasma Polymerization on Metals |
| |
Authors: | P. J. Dynes D. H. Kaelble |
| |
Affiliation: | Science Center Rockwell International Thousand , Oaks, California, 91360 |
| |
Abstract: | An ellipsometric technique is described for accurately measuring the film thickness of plasma-polymerized polymers on metallic substrates. The index of refraction n and absorption index Kof the plasma polymer film can also be studied by ellipsometry. Films of plasma polystyrene and polyepichlorohydrin were deposited on evaporated aluminum substrates and their thickness and optical constants determined. Plasma polystyrene films from 20 to 1600 Å thick have optical constants n = 1.63 and K =0 independent of film thickness. Plasma polyepichlorohydrin films over the same range of thickness give n ? 1.70 and K? 0.01. By utilizing the ellipsometric method the effect of plasma polymer film thickness on surface energy properties was determined. Advancing contact angle measurements and surface energy analysis detail the polar γSVP dispersion γSVPcontributions to the solid-vapor surface tension γSV = γSVd + γSVP Polystyrene and polyepichlorohydrin films on etched aluminum. For thin plasma polystyrene films (600 Å), anomalies in the calculated surface energy are discussed and related to possible surface nonuniformity caused by film growth. Thicker films of plasma polystyrene are shown to have normal surface energy properties as does plasma poly-epichlorohydrin over the entire range of film thickness measured. The adhesive and cohesive properties of plasma polystyrene and polyepichlorohydrin films are discussed as estimated from a lap-shear bond strength study. Etched aluminum coated with various thicknesses of these two polymers and bonded with an epoxy-phenolic adhesive shows a decreasing shear strength with increasing plasma film thickness but begins to level off at ~1600 psi for films >1600 Å thick. |
| |
Keywords: | infrared spectroscopy thermal analysis isotactic polypropylene natural degradation |
|