首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Role of Donor-Acceptor Complexes in the Initiation of Ionic Polymerization
Authors:J K Stille  N Oguni  D C Chung  R F Tarvin  S Aoki  M Kamachi
Institution:Department of Chemistry , University of Iowa , Iowa City, Iowa, 52242
Abstract:Work carried out in the past few years aimed at elucidating the mechanism of initiation of vinyl polymerization when a donor and an acceptor molecule, one or both of which may be vinyl monomers, is summarized. The emphasis of our investigation has been on polymerizable ether donors and strong electron acceptors which do not undergo polymerization, or the acceptor vinylidene cyanide. Alkyl vinyl ethers were polymerized in the presence of tetracyanoquinodimethane (TCNQ) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) in polar solvents. Observation of the ESR spectrum of the DDQ radical anion and the isolation of a 1:1 addition product of DDQ and alkyl vinyl ether when the two are mixed in a 1:1 ratio and quenched in alcohol support an initiation mechanism involving a coupling reaction of the donor monomer (radical cation) and the acceptor initiator (radical anion). The reaction of vinylidene cyanide (VC) with the vinyl ethers p-dioxene, dihydropyran, ethyl vinyl ether, isopropyl vinyl ether, and ketene diethylacetal in a variety of solvents at 25°C spontaneously afforded poly(vinylidene cyanide), the cycloaddition products 7,7-dicyano-2,5-dioxo-bicyclo4.2.0] octane, 8,8-dicyano-2-oxo-bicyclo4.2.0] octane, the 1,1-dicyano-2-alkoxycyclo-butanes, and 1,1-diethoxy-2,2,4,4-tetracyanohexane, respectively, and with the exception of p-dioxene, homopolymers of the vinyl ethers. In the presence of AIBN at 80°C, alternating copolymers were obtained in addition to the homopolymers and cycloaddition products, supporting the involvement of donor-acceptor complexes. The reaction of styrene with VC spontaneously formed an alternating copolymer in addition to the 1:2 head-to-head cycloaddition product, 1,1,3,3-tetracyano-4-phenylcyclohexane. Mixing VC with any one of the cyclic ethers tetrahydrofuran, oxetane, 2,2-dimethyloxirane, 2-chloromethyloxirane, and phenyloxirane resulted in the polymerization of both the VC and the cyclic ether to afford homopolymers of both. The cyclic ethers trioxane, 3,3-bis(chloromethyl)oxetane, and oxirane initiated the polymerization of VC, but did not undergo ring-opening polymerizations themselves. Other ethers such as 1,3-dioxolane, tetrahydropyran, and diethyl ether did not initiate the polymerization of VC. In these polymerizations, VC and the cyclic ethers polymerize via anionic and cationic propagation reactions, respectively.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号