首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Radiation-Induced Polymerization of Urea Canal Complex. Part 4. Radiation-Induced Polymerization of Acrylonitrile in Urea-Ethylene Glycol Supercooled Liquid System
Authors:Teruhiko Maekawa  Seizo Okamura
Institution:Department of Polymer Chemistry , Kyoto University , Kyoto, Japan
Abstract:Abstract

Using elementary analysis, NMR on 3 1P and 1H nuclei, and electroconductivity methods, the acrylonitrile, methacrylonitrile, formaldehyde, and β-propiolactone anionic polymerization in the presence of triethylphosphine is shown to follow the macrozwitterion mechanism: quartary phosphonium being on one end of a polymer chain and the growing anion on the other. The number of covalent bonds through the whole polymer chain between charges forming the active center increases with the propagation reaction. The active centers stationary concentration in the system is low when connected with both the slow initiation reaction and with the fast active centers termination reaction. Thus the ion interaction of different growing polymer chains can be ignored. The active centers parts occurring in the form of ion pairs (the ends are near and form the “cyclic”) and of free ions (the ends are separated) are determined by the monomolecular equilibrium, and its constant depends upon the macro-zwitterion polymerization degree Kd (n) = Kd (I)n3/2. Such constant depends upon the chain length affords the macrozwitterion self-accelerated propagation with its length, as the free ion reactivity is more than that of ion pairs. The self-accelerated chain propagation effect shows up as an increase of polymerization initial rate order and polymer molecular weight in the monomer concentration. This effect can be avoided by the introduction of electrolyte into the system, which dissociates into ions and transforms all cyclic ion pairs into the linear form, the latter dissociating independently of chain length. The strict mathematical analysis of stationary and nonstationary polymerization kinetics made it possible to determine all the elementary constants separately: Ki = 5.6 × 10?4 liters/ (mole) (min); K- = 2.5 × 104 liter/ (mole) (min); K± = 2.0 liters/ (mole) (min); Kt = 0.84/min; Kt 1 = 4/min; Kd (I) = 10?4; K3 = 0.07 × 10?4 mole/liter.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号