首页 | 本学科首页   官方微博 | 高级检索  
     检索      


NMR investigations of the static and dynamic structures of bisphosphonates on human bone: a molecular model
Authors:Mukherjee Sujoy  Song Yongcheng  Oldfield Eric
Institution:Center for Biophysics and Computational Biology, 607 South Mathews Avenue, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
Abstract:We report the results of an investigation of the binding of a series of bisphosphonate drugs to human bone using 2H, 13C, 15N, and 31P nuclear magnetic resonance spectroscopy. The 31P NMR results show that the bisphosphonate groups bind irrotationally to bone, displacing orthophosphate from the bone mineral matrix. Binding of pamidronate is well described by a Langmuir-like isotherm, from which we deduce an approximately 30-38 A2 surface area per pamidronate molecule and a deltaG = -4.3 kcal mol(-1). TEDOR of 13C3, 15N] pamidronate on bone shows that the bisphosphonate binds in a gauche N-C(1)] conformation. The results of 31P as well as 15N shift and cross-polarization measurements indicate that risedronate binds weakly, since it has a primarily neutral pyridine side chain, whereas zoledronate (with an imidazole ring) binds more strongly, since the ring is partially protonated. The results of 2H NMR measurements of side-chain 2H-labeled pamidronate, alendronate, zoledronate, and risedronate on bone show that all side chains undergo fast but restricted motions. In pamidronate, the motion is well simulated by a gauche+/gauche- hopping motion of the terminal -CH2-NH3(+) group, due to jumps from one anionic surface group to another. The results of double-cross polarization experiments indicate that the NH3(+)-terminus of pamidronate is close to the bone mineral surface, and a detailed model is proposed in which the gauche side-chain hops between two bone PO4(3-) sites.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号