首页 | 本学科首页   官方微博 | 高级检索  
     


Optically detected magnetic resonance study of the lowest excited triplet state of aromatic thioketones: Xanthione
Authors:August H. Maki  Peter Svejda  J.Robert Huber
Affiliation:Department of Chemistry, University of California, Davis, California 95616 USA;Fachbereich Chemie, Universität Konstanz, D7750 Konstanz, West Germany
Abstract:The aromatic thioketone xanthione has been investigated by means of the optically detected magnetic resonance (ODMR) technique in a n-hexane matrix at ≈ 1.1 K. It was established that the short-lived red emission, which is characteristic for many thione molecules, is phosphorescence. At high temperatures (77 K) this phosphorescence originates mainly (>80%) from the T1z (n, π*) sublevel (kz(r) >kx(r), ky(r). At low temperature (1.1 K) the intersystem crossing following S2 (π, π*) ← S0 excitation is a highly spin-sublevel selective process which populates predominantly the T1x and T1y, levels. Hence, the slow spin—lattice relaxation phosphorescence at low temperature originates from these sublevels. A value of 0.0611 cm?1 was obtained for the zero-field parameter |E|/hc. A lower limit of 0.66 cm?1 has been found for the zero-field parameter |D|/hc. This value is considerably larger than those observed for ketones, and it is shown that spin—orbit coupling contributes strongly to the zero-field splitting.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号