首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermal methods for evaluating polymorphic transitions in nifedipine
Authors:D Grooff  MM De Villiers
Institution:a Department of Chemistry, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
b School of Pharmacy, University of Wisconsin, Madison, WI, USA
c Research Institute for Industrial Pharmacy, School of Pharmacy, North-West University, Potchefstroom, South Africa
Abstract:The thermal behaviour of nifedipine was studied with the view to understand the various phase transitions between its polymorphs. The focus was on polymorph identification, accompanying morphological changes during crystallization and the nature of the phase transformations. These features were compared to the complexity of the crystallization mechanisms, studied by dynamic differential scanning calorimetry (DSC) heating techniques. DSC, thermogravimetry (TG) established the temperature limits for preparation of amorphous nifedipine from the melt. DSC studies identified that metastable form B, melting point ∼163 °C, was enantiotropically related to a third modification, form C, which existed at lower temperatures. Form C converted endothermically to form B at ∼56 °C on heating and was shown by hot stage microscopy (HSM) to be accompanied by morphological changes. Modulated temperature differential scanning calorimetry (MTDSC) showed discontinuities in the reversing heat flow signal during crystallization of amorphous nifedipine (from ∼92 °C) to form B, which suggested that a number of polymorphs may nucleate from the melt prior to form B formation. Identification of the number of nifedipine polymorphs included the use of combined DSC-powder X-ray diffraction (PXRD) and variable temperature powder X-ray diffraction (VTPXRD). The crystallization kinetics studied by dynamic DSC heating techniques followed by analysis using the Friedman isoconversion method where values of activation energy (E) and frequency factor (A) were estimated as a function of alpha or extent of conversion (α). The variations in E with α, from 0.05 to 0.9, for the amorphous to form B conversion could indicate the formation of intermediate polymorphs prior to form B. The form B to form A conversion showed a constancy in E on kinetic analysis from α 0.05 to 0.9, which suggested that a constant crystallization mechanism operated during formation of the thermodynamically stable form A.
Keywords:Nifedipine  DSC  Polymorphism  Enantiotropic  Crystallization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号