首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Orbital interpretation of kinetic energy density and a direct space comparison of chemical bonding in tetrahedral network solids
Authors:Seo Dong-Kyun  Weng Chang'e
Institution:Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA. dseo@asu.edu
Abstract:We present how the kinetic energy density (KED) can be interpreted on the basis of the orbital interactions within the Kohn-Sham theory and propose how to utilize a direct space function in chemical bonding analysis, the relative entropy density (RED), which is constructed from the KED, the Thomas-Fermi KED (TF-KED), and the electron density. From the detailed analysis of the KED of wave functions and the TF-KED from the free electron model, it is shown that the RED can reveal the nodal properties of individual wave functions and provide a variationally meaningful way of accumulating chemical bonding information from the wave functions, hence allowing quantitative bonding analysis in direct space. To substantiate the proposal, the RED function has been tested on the tetrahedral network solids, including the group 14 elements and the III-V binary compounds with the zinc blende structure. The direct space maps of the RED quantitatively reflect the trend in metallicity and the polarity of their two-center, two-electron bonds in terms of the absolute values of the RED, the location of the minimum values, and the behavior of the deformation from the spherical symmetry of the atomic RED.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号