首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the use of isovalued surfaces to determine molecule shape and reaction pathways
Authors:George D Purvis III
Institution:(1) CACheTM Group, Tektronix Inc., P.O. Box 500 M.S. 13-400, 97077 Beaverton, OR, U.S.A.
Abstract:Summary Novel insights into local molecule structure and reactivity can be gained from viewing isovalued surfaces of the molecular electron density, electrostatic potential and molecular orbitals rendered as colored, 3-D objects. For example, drawing positive and negative electrostatic isopotential surfaces partitions the molecule into regions subject to nucleophilic or electrophilic attack. Similarly, coloring isodensity surfaces to indicate the magnitude of the gradient of the electron density maps the molecule surface into regions of high and low electronegativity.A basic understanding of reaction mechanisms can also come from viewing and manipulating isovalued surfaces. A theory of molecular interactions, based upon second-order perturbation theory, provides for the decomposition of the intermolecular interaction energy into steric, electrostatic and orbital interactions. Color figures illustrate the docking of reactant molecular densities, electrostatic potentials and orbitals on low-energy pathways. The figures are used to visualize the steric, electrostatic and orbital contributions to molecular interaction energy. The visualization not only identifies low-energy reaction pathways, but it frequently reveals local interactions which determine the magnitude of the total interaction energy. Similar insight is not easily obtained by simple evaluation of the total interaction energy. Approximate transition states, built from structures along low-energy approach pathways, are excellent starting points for transition state searches.CACheTM Technical Report No. 1, Tektronix Inc., Beaverton, OR.
Keywords:Molecular reactivity  Electrostatic potential  Gradient mapped electron isodensity  Frontier molecular orbital theory  Orbital interactions  Scientific visualization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号