首页 | 本学科首页   官方微博 | 高级检索  
     


Some Pt(II)-complexes with dpb,Fdpb and F2dpb ligands as potent anticancer agents and their mode of interaction with AT/GC base pairs: A DFT study
Affiliation:Department of Applied Sciences, Gauhati University, Guwahati, 781014, Assam, India
Abstract:In recent years, various Pt(II) metal complexes with N-based intercalating tridentate ligands, such as dpb, Fdpb, and F2dpb, have been developed which exhibit strong anticancer properties because they effectively bind with DNA nucleobase pairs. Past literature has also revealed that the anticancer activity of such square planer Pt(II)-complexes is fully controlled by the presence of halide groups (viz., –F, -Cl and –I) which are directly attached to the Pt(II) ion or tridentate ligands. The proper active sites within Pt(II)-complexes and the role of Pt-X bond may also theoretically be determined by using a molecular electrostatic potential (MEP) map diagram. Moreover, the quantum mechanical TD-DFT (Time-dependent density-functional theory) method is quite useful for predicting the theoretical UV–Vis spectra for such Pt(II)-complexes, during interaction with AT/GC base pairs. The density-functional theory (DFT) is one of the low-cost theoretical methods which is also a useful tool for investigating the various binding modes for anticancer agents with DNA nucleobases. In this current study, we aim to analyze the proper interaction between some dpb-based Pt(II)-complexes as potent anticancer agents with AT/GC base pairs.
Keywords:Pt(II)-Complexes  dpb  Fdpb  DFT  AT  GC etc
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号