首页 | 本学科首页   官方微博 | 高级检索  
     


Theoretical study of the structural character of weakly bonding silicon carbonyl complexes
Authors:Yuxiang Bu  Zhaohua Cao
Affiliation:(1) Institute of Theoretical Chemistry, Shandong University, Jinan 250100, China, CN;(2) Department of Chemistry, Qufu Normal University, Qufu 273165, China, CN;(3) Chemistry group, Heze Medical College, Heze 273600, China, CN
Abstract:The structures, properties and the bonding character for sub-carbonyl Si, SiCO and Si(CO)2, in singlet and triplet states have been investigated using complete-active-space self-consistent field (CASSCF), density functional theory and second-order M?ller–Plesset methods with a 6-311+G* basis set. The results indicate that the SiCO species possesses a 3ground state, and the singlet 1Δ excited state is higher in energy than the 3 state by 17.3 kcalmol−1 at the CASSCF–MP2/6-311+G* level and by 16.4 kcalmol−1 at the CCSD(T)/6-311+G* level. The SiCO ground state may be classified as silene (carbonylsilene), and its COδ− moiety possesses CO property. The formation of SiCO causes the weakening of CO bonds. The Si–C bond consists of a weak σ bond and two weak π bonds. Although the Si–C bond length is similar to that of typical Si–C bonds, the bond strength is weaker than the Si–C bonds in Si-containing alkanes; the calculated dissociation energy is 26.2 kcalmol−1 at the CCSD(T)/6-311+G* level. The corresponding bending potential-energy surface is flat; therefore, the SiCO molecule is facile. For the bicarbonyl Si systems, Si(CO)2, there exist two V-type structures for both states. The stablest state is the singlet state (1A1), and may be referred to the ground state. The triplet state (3B1) is energetically higher in energy than the 1A1 state by about 40 kcalmol−1 at the CCSD(T)/6-311 + G* level. The bond lengths in the 1A1 state are very close to those of the SiCO species, but the SiCO moieties are bent by about 10°, and the CSiC angles are only about 78°. The corresponding 3B1 state has a CSiC angle of about 54° and a SiCO angle of about 165°, but its Si–C and C–O bonds are longer than those in the 1A1 state by about 0.07 and 0.03 ?, respectively. This Si(CO)2 (1A1) has essentially silene character and should be referred to as a bicarbonyl silene. Comparison of the CO dissociation energies of SiCO and Si(CO)2 in their ground states indicates that the first CO dissociation energy of Si(CO)2 is smaller by about 7 kcalmol−1 than that of SiCO; the average one over both CO groups is also smaller than that of SiCO. A detailed bonding analysis shows that the possibility is small for the existence of polycarbonyl Si with more than three CO. This prediction may also be true for similar carbonyl complexes containing other nonmetal and non-transition-metal atoms or clusters. Received: 17 April 2002 / Accepted: 11 August 2002 / Published online: 4 November 2002 Acknowledgements. This work was supported by the National Natural Science Foundation of China (29973022) and the Foundation for Key Teachers in University of the State Ministry of Education of China. Correspondence to: Y. Bu e-mail: byx@sdu.edu.ch
Keywords:: Silicon carbonyl complexes –   Weakly bonding interaction –   Density functional calculations –   Ab initio calculations
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号