首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Anomalous corresponding-states surface tension of hydrogen fluoride and of the Onsager model
Authors:Weiss Volker C  Schröer Wolffram
Institution:School of Engineering and Science, International University Bremen, P.O. Box 750561, 28725 Bremen, Germany. v.weiss@iu-bremen.de
Abstract:In a corresponding-states analysis of the liquid-vapor surface tension originally suggested by Guggenheim, we study the behavior of different simple (i.e., nonpolar), polar and ionic fluids. The results are compared to the corresponding ones for model fluids of each of the three types. For simple and weakly polar fluids (both real and model), the data map onto a master curve, as demonstrated by Guggenheim. For strongly dipolar, associating fluids, which also exhibit hydrogen bonding, one finds deviations from the master curve at low temperatures and, thus, observes the characteristic sigmoid behavior of the reduced surface tension as a function of temperature. The same is obtained for the model ionic fluid, the restricted primitive model. Truly exceptionally low values of the reduced surface tension are found for hydrogen fluoride and for the Onsager model of dipolar fluids, the surface tension of which we evaluate using an approximate hypernetted chain relation to obtain the square-gradient term in a modified van der Waals theory. Remarkably, in the corresponding-states plot, the surface tensions of HF and of the Onsager model agree very closely, while being well separated from the values for the other fluids. We also study the gradual transition of a model fluid from a simple fluid to a strongly dipolar one by varying the relative strength of dipolar and dispersion forces.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号