首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nucleation in a simple model for protein solutions with anisotropic interactions
Authors:Talanquer V
Institution:Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA.
Abstract:A lattice analog of density functional theory is used to explore the structural and thermodynamic properties of critical nuclei in mixtures of particles with attractive anisotropic interactions. Protein molecules are assumed to occupy the sites on a regular cubic lattice, with effective directional interactions that mimic hydrogen bonding and the solvation forces induced by water. Interaction parameters are chosen to qualitatively reproduce the phase behavior of protein solutions. Our model predicts that critical nuclei of the solidlike phase have nonspherical shapes, and that their specific geometry depends on the nature of the anisotropic interactions. Molecules tend to align in distinctive ways in the core and in the interfacial region of these critical clusters, and the width and structure of the interface are highly affected by the presence of a metastable fluid-fluid critical point. Close to the critical region, the height of the barrier to nucleation is strongly reduced; this effect is enhanced by increasing the anisotropy of the intermolecular interactions. Unlike systems with short-range isotropic interactions, nucleation in our model is initiated by highly ordered clusters in which the order-disorder transition is confined to the interfacial region.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号