首页 | 本学科首页   官方微博 | 高级检索  
     


Structural and compositional modification of a barium boroaluminosilicate glass surface by thermal poling
Authors:Nicholas J. Smith  Carlo G. Pantano
Affiliation:1. Department of Material Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
2. Science and Technology Division, Corning Incorporated, Corning, NY, USA
Abstract:In addition to inducing second-order nonlinear properties, significant structural and compositional alteration can be imparted to glass surfaces during the process of thermal poling. In this work, we focus on how thermal poling affects a structurally complex, nominally alkali-free boroaluminosilicate display glass composition. We provide evidence for electrolysis of the glass network, characterized by the migration of both cations (Ba2+, Na+) and anions (O?, F?) towards opposing electrode interfaces. This process results in oxidation of the positively biased electrode and forms a network-former rich, modifier-depleted glass surface layer adjacent to the anodic interface. The modified glass layer thickness is qualitatively correlated to the oxidation resistance of the electrode material, while extrinsic ions such as H+/H3O+ at not found in the depletion layer to compensate for the migration of modifier cations out of the region. Rather, FTIR spectroscopy suggests a local restructuring of the B2O3–Al2O3–SiO2 network species to accommodate the charge imbalance created by the exodus of network-modifying cations, specifically the conversion of tetrahedral B(4) to trigonal B(3) as Ba or Na ions are removed from B-related sites in the parent network. The resultant poling-induced depletion layer exhibits enhanced hydrolytic resistance under acidic conditions, and the IR spectra are substantially unlike those produced by acid leaching the same glass.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号