首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Zum Mechanismus der photochemischen Umwandlung von 2-Alkyl-indazolen in 1-Alkyl-benzimidazole. II. Photophysikalische und photochemische Primärprozesse
Authors:Willy Heinzelmann  Michael Mrky  Paul Gilgen
Institution:Willy Heinzelmann,Michael Märky,Paul Gilgen
Abstract:Mechanistic studies on the photoisomerization of 2-alkyl-indazoles into 1-alkyl-benzimidazoles. II. Primary photochemical processes and photophysical deactivation. In the previous paper 1] the structure of the intermediate in the photochemical indazole-benzimidazole-isomerization was discussed ( 3 in Scheme 1). In this communication experiments concerning the photochemical primary processes and photophysical deactivation of 2-alkyl-indazoles ( 1 ) are described. The quantum yield of the rearrangement 1 → 2 (ΦR) decreases with decreasing temperature while the fluorescence quantum yield (ΦF) increases and finally reaches a constant value ( ≠ 1) (Fig.10). This behaviour is inconsistent with the mechanism shown in Scheme 2. Photoreaction and fluorescence are both quenched, but not to the same extent, by freon 113 (Fig. 2). In addition the Stern-Volmer-plots are not linear. These observations are best explained by assuming the existence of two excited states in equilibrium (Scheme 3). The mechanism in Scheme 3 correctly explains the quenching experiments and the temperature dependence of ΦR and ΦF if the Arrhenius law holds for the two rate constants ksx and kR. However, for a quantitative calculation of ΦR, an additional branching of the reaction pathway must be postulated (Scheme 4). Two-dimensional drawings of hypothetical potential energy surfaces of the ground state and the first excited singlet state yielding a qualitative picture of the reaction and deactivation pathways of the discussed molecule are given in Fig. 15 a and b.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号