首页 | 本学科首页   官方微博 | 高级检索  
     


Engineering human Fhit, a diadenosine triphosphate hydrolase, into an efficient dinucleoside polyphosphate synthase
Authors:Huang Kaisheng  Frey Perry A
Affiliation:Department of Biochemistry, University of Wisconsin-Madison,1710 University Avenue, Madison, Wisconsin 53726, USA.
Abstract:The putative human tumor suppressor gene FHIT encodes Fhit, the fragile histidine triad protein. Fhit is thought to participate in a signal transduction pathway involving dinucleoside polyphosphates. Fhit catalyzes the Mg2+-dependent hydrolysis of P1-5'-O-adenosine-P3-5'-O-adenosine triphosphate (Ap3A) to AMP and MgADP. Mutation of His96 to glycine disables Fhit as a catalyst for the hydrolysis of phosphoanhydrides such as Ap3A. However, the mutated enzyme H96G-Fhit efficiently catalyzes the synthesis of phosphoanhydride bonds in reactions of nucleoside-5'-phosphimidazolides with nucleoside di- and triphosphates. H96G-Fhit can be employed in the synthesis of a wide range of dinucleoside tri- and tetraphosphates. We here describe the use of H96G-Fhit to catalyze the synthesis of Ap3A, Ap3C, Ap3G, Ap3T, Ap3U, Cp3U, Tp3U, dAp3U, Ap4A, Ap4U, and the fluorescent Ap4etheno-C.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号