首页 | 本学科首页   官方微博 | 高级检索  
     


Structure and dynamics of graphite-supported bimetallic nanoclusters
Authors:Shi-Ping HuangDaniela S. Mainardi  Perla B. Balbuena
Affiliation:Swearingen Engineering Center, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
Abstract:Molecular dynamics simulations are used to analyze the structure and dynamics of isolated bimetallic nanoclusters of 343 (Cu-Ni) and 1000 atoms (Cu-Ni and Pt-Au) deposited on a graphite substrate. The metal-metal interactions are modeled with the many-body Sutton-Chen potential, and a Lennard-Jones potential is used to describe the metal-carbon interactions. The nanocluster melting temperature is determined from caloric and heat capacity curves, and the atomic distribution is studied layer-by-layer as a function of temperature in a direction perpendicular to the substrate plane. Changes in the nanocluster shape as temperature increases are monitored through deformation parameters that show clear evidence of structural and melting transitions as well as of atomic surface diffusion in the cluster. Dynamic properties such as atomic and whole-cluster diffusion, and the motion of the metal atoms at the interface metal/graphite are characterized as a function of temperature.
Keywords:Molecular dynamics   Clusters   Surface melting   Wetting
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号