首页 | 本学科首页   官方微博 | 高级检索  
     


Chemical control of the DNA light switch: cycling the switch ON and OFF
Authors:Liu Yao  Chouai Abdellatif  Degtyareva Natalya N  Lutterman Daniel A  Dunbar Kim R  Turro Claudia
Affiliation:Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA.
Abstract:The emission of the DNA light-switch complex [Ru(bpy)2(tpphz)]2+ (bpy = 2,2'-bipyridine, tpphz = tetrapyrido[3,2-a:2',3'-c:3' ',2' '-h:2' ',3' '-j]phenazine) can be reversibly turned ON and OFF over several cycles. The tpphz and taptp (taptp = 4,5,9,18-tetraazaphenanthreno[9,10-b] triphenylene) ligands in [Ru(bpy)2(tpphz)]2+ and [Ru(bpy)2(taptp)]2+, respectively, intercalate between the DNA bases, and a 50-fold increase in emission intensity of [Ru(bpy)2(tpphz)]2+ is observed upon DNA intercalation. The [Ru(bpy)2(tpphz)]2+ DNA light switch can be turned OFF statically in the presence of Co2+, Ni2+, and Zn2+, and the emission can be fully restored by the addition of EDTA. Cycling of the DNA light switch OFF and ON can be accomplished through the successive introduction of Co2+ and EDTA, respectively, to solutions of DNA-bound [Ru(bpy)2(tpphz)]2+. Owing to the absence of additional coordination sites, the emission of DNA-intercalated [Ru(bpy)2(taptp)]2+ is not quenched by transition metal ions in solution. To our knowledge, this work presents the first example of a reversible DNA light switch.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号