首页 | 本学科首页   官方微博 | 高级检索  
     

Sn-Cl共掺杂的锂离子正极材料Li2MnO3的结构及电化学性能研究
引用本文:王非,翟欢欢,王杜丹,李玉鹏,陈康华. Sn-Cl共掺杂的锂离子正极材料Li2MnO3的结构及电化学性能研究[J]. 电化学, 2020, 26(1): 148-155. DOI: 10.13208/j.electrochem.190313
作者姓名:王非  翟欢欢  王杜丹  李玉鹏  陈康华
作者单位:1. 中南大学粉末冶金研究院,湖南 长沙 4100832. 中南大学粉末冶金国家重点实验室,湖南 长沙 410083
基金项目:国家重点研发计划(No.2016YFB0300801);国家自然科学基金重大科研仪器设备研制专项(No.51327902)资助。
摘    要:以乙酸盐为原料,柠檬酸为络合剂,通过溶胶-凝胶的方法制备富锂阴极材料Li2MnO3,选用草酸亚锡(SnC2O4)为锡源,用Sn 4+代替Mn 4+,获得不同掺杂量的材料. 适当含量的Sn 4+掺杂可以提高材料的放电比容量,在低电流下获得256.3 mAh·g -1的高放电比容量,但由于Sn 4+离子半径过大,不能起到稳定结构的作用,材料的倍率性能较差. 在此基础上,选用氯化亚锡(SnCl2)进行掺杂改性,在材料中同时引入Sn 4+和Cl -掺杂,获得了层状结构更完整的粉末样品. 通过共掺杂改性的阴极材料可以在20 mA·g -1的电流密度,经过80圈的循环仍然保持153 mAh·g -1的放电比容量,且此时还未出现衰减现象,库仑效率保持在96%以上;在400 mA·g -1的电流密度下提供的比容量可高达116 mAh·g -1,是未掺杂样品的2倍左右.

关 键 词:锂离子电池  正极材料  Li2MnO3  草酸亚锡  氯化亚锡  Sn-Cl共掺杂  
收稿时间:2019-03-13

Structures and Electrochemical Properties of Sn-Cl Co-Doped Li2MnO3 as Positive Materials for Lithium Ion Batteries
WANG Fei,ZHAI Huan-huan,WANG Du-dan,LI Yu-peng,CHEN Kang-hua. Structures and Electrochemical Properties of Sn-Cl Co-Doped Li2MnO3 as Positive Materials for Lithium Ion Batteries[J]. Electrochemistry, 2020, 26(1): 148-155. DOI: 10.13208/j.electrochem.190313
Authors:WANG Fei  ZHAI Huan-huan  WANG Du-dan  LI Yu-peng  CHEN Kang-hua
Affiliation:(Powder Metallurgy Research Institute,Central South University,Changsha 410083,China;State Key Laboratory of Powder Metallurgy,Central South University,Changsha 410083,China)
Abstract:Positive material Li2MnO3 shows the highest ratio of lithium to manganese among lithium-rich materials and exhibites the theoretical capacity up to 458 mAh·g-1, making it one of the most promising cathode materials. However, this material has the intrinsic low electrical conductivity and poor cycle stability. In this paper, Li2MnO3, the lithium-rich positive material, was prepared by sol-gel method using acetate as raw material and citric acid as a complexing agent. By using SnC2O4 as a tin source,Sn4+instead of Mn4+ was introduced to obtain the materials with different doping amounts. The resultant solution was evaporated at 80 °C under vigorous stirring to get a viscous gel. Next, the resulting gel was dried at 120 ° C for 12 h. Finally, the gathered precursor was calcined at 600 °C for 6 h under an air atmosphere to obtain the target material. It was found that the proper content of Sn4+doping could increase the specific discharge capacity of the material, obtaining as high as 256.3 mAh·g-1 at low current, but had a detrimental influence on the rate performance. On this basis, SnCl2 was used for doping modification, and the Sn4+ and Clco-doping into Li2MnO3 revealed a better developed layered structure with high conductivity. The intensity of super lattice peak formed between 2θ = 20° and 30° was increased by Cl-doping, indicating the ordered Li/Mn in the TM layer. Especially, this Sn-Cl co-doped Li2MnO3 sample delivered the relatively high specific discharge capacity of approximate 160 mAh·g-1 after 80 cycles at 20 mA·g-1. At the high current density of 400 mA·g-1, this material provided the specific discharge capacity of 116 mAh·g-1, which is about twice that of the undoped sample.
Keywords:lithium ion battery  positive electrode material  Li2MnO3  SnC2O4  SnCl2  Sn-Cl co-doping
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《电化学》浏览原始摘要信息
点击此处可从《电化学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号