首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Critical velocity and event horizon in pair-correlated systems with “relativistic” fermionic quasiparticles
Authors:N B Kopnin  G E Volovik
Institution:(1) Helsinki University of Technology, Low Temperature Laboratory, P. O. Box 2200, FIN-02015 HUT, Finland;(2) Landau Institute of Theoretical Physics, Russian Academy of Sciences, 117334 Moscow, Russia
Abstract:The condition for the appearance of an event horizon is considered in pair-correlated systems (superfluids and superconductors) in which the fermionic quasiparticles obey “relativistic” equations. In these systems the Landau critical velocity of superflow corresponds to the speed of light. In conventional systems, such as s-wave superconductors, the superflow remains stable even above the Landau threshold. We show, however, that, in “ relativistic” systems, the quantum vacuum becomes unstable and the superflow collapses after the “speed of light” is reached, so that the horizon cannot appear. Thus an equilibrium dissipationless superflow state and the horizon are incompatible on account of quantum effects. This negative result is consistent with the quantum Hawking radiation from the horizon, which would lead to a dissipation of the flow. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 2, 124–129 (25 January 1998) Published in English in the original Russian journal. Edited by Steve Torstveit.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号