首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electro-nuclear double resonance spectroscopic evidence for a hydroxo-bridge nucleophile involved in catalysis by a dinuclear hydrolase
Authors:Smoukov Stoyan K  Quaroni Luca  Wang Xuedong  Doan Peter E  Hoffman Brian M  Que Lawrence
Institution:Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
Abstract:Despite the current availability of several crystal structures of purple acid phosphatases, to date there is no direct evidence for solvent-derived ligands occupying terminal positions in the active enzyme. This is of central importance, because catalysis has been shown to proceed through the direct attack on a metal-bound phosphate ester by a metal-activated solvent-derived moiety, which has been proposed to be either (i) a hydroxide ligand terminally bound to the ferric center or (ii) a bridging hydroxide. In this work we use (2)H Q-band (35 GHz) pulsed electron-nuclear double resonance (ENDOR) spectroscopy to identify solvent molecules coordinated to the active mixed-valence (Fe(3+)Fe(2+)) form of the dimetal center of uteroferrin (Uf), as well as to its complexes with the anions MoO(4), AsO(4), and PO(4). The solvent-derived coordination of the dinuclear center of Uf as deduced from ENDOR data includes a bridging hydroxide and a terminal water/hydroxide bound to Fe(2+) but no terminal water/hydroxide bound to Fe(3+). The terminal water is lost upon anion binding while the hydroxyl bridge remains. These results are not compatible with a hydrolysis mechanism involving a terminal Fe(3+)-bound nucleophile, but they are consistent with a mechanism that relies on the bridging hydroxide as the nucleophile.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号