首页 | 本学科首页   官方微博 | 高级检索  
     


Selective synthesis of 2,6-triad dimethylnaphthalene isomers by disproportionation of 2-methylnaphthalene over mesoporous MCM-41
Authors:Fatih Güleç  Aysel Niftaliyeva  Ali Karaduman
Affiliation:1.Department of Chemical Engineering, Faculty of Engineering,University of Nottingham,Nottingham,UK;2.Department of Chemical Engineering, Faculty of Engineering,Sel?uk University,Konya,Turkey;3.Department of Chemical Engineering, Faculty of Engineering,Ankara University,Ankara,Turkey
Abstract:2,6-Dimethylnaphthalene (2,6-DMN) is one of the crucial intermediates for the synthesis of polybutylenenaphthalate and polyethylene naphthalate (PEN). The complex synthesis procedure and the high cost of 2,6-DMN production significantly reduce the commercialisation of PEN even though PEN demonstrates superior properties compared with polyethylene terephthalate. 2,6-DMN can be produced by methylation of 2-methylnaphthalene (2-MN) and/or naphthalene, disproportionation of 2-MN, and/or isomerisation of dimethylnaphthalenes (DMNs). In this study, synthesis of 2,6-triad DMN isomers consisting of 2,6-DMN, 1,6-DMN, and 1,5-DMN have been investigated with the disproportionation of 2-MN over unmodified and Zr-modified mesoporous MCM-41 zeolite catalysts. In contrast to other DMN isomers, both 1,5-DMN and 1,6-DMN can be effectively isomerised to be profitable 2,6-DMN. The disproportionation of 2-MN experiments were carried out in a catalytic fixed-bed reactor in the presence of 1 g of catalyst at a temperature range of 350–500 °C and weight hourly space velocity between 1 to 3 h?1. The results demonstrated that mesoporous MCM-41 zeolite catalyst has a selective pore shape for 2,6-triad DMN isomers, which may allow a decrease in the production cost of 2,6-DMN. Additionally, 2,6-DMN was successfully synthesised by the disproportionation of 2-MN over MCM-41 zeolite catalyst. Furthermore, both the conversion of 2-MN and the selectivity of 2,6-DMN were considerably enhanced by the Zr impregnation on MCM-41.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号