首页 | 本学科首页   官方微博 | 高级检索  
     


Physical properties of soft repulsive particle fluids
Authors:Heyes D M  Brańka A C
Affiliation:Division of Chemistry, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, UKGU2 7XH. d.heyes@surrey.ac.uk
Abstract:Molecular dynamics computer simulation has been applied to inverse power or soft-sphere fluids, in which the particles interact through the soft-sphere pair potential, phi(r) = epsilon(sigma/r)(n), where n measures the steepness or stiffness of the potential, and epsilon and sigma are a characteristic energy and distance, respectively. The focus of the study is on very soft particles with n values down to 4 considered, at densities up to and along the fluid-solid co-existence density. It is shown that in the soft-particle limit the local structure is dominated by the lengthscale associated with the average nearest neighbour distance of a random structure, which is proportional, variantrho(-1/3) and increasingly only very weakly dependent on n. This scaling is also manifest in the behaviour of the average energy per particle with density. The self-diffusion coefficient and shear viscosity are computed along the fluid-solid co-existence line as a function of n, for the first time. The product Deta(s) steadily increases with softness for n < 10, whereas the modified Stokes-Einstein relationship of Zwanzig, Deta(s)/rho(1/3), where rho is the number density, is within statistics constant over the same softness range. This is consistent with our observation that the static properties are determined by a characteristic lengthscale (i.e., l) which is proportional, variantrho(-1/3) in the soft-particle limit. The high frequency elastic moduli of these fluids are examined, which reveals that the mechanical properties become more 'rubbery' as the particles get softer.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号