首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reaction mechanism of porphyrin metallation studied by theoretical methods
Authors:Shen Yong  Ryde Ulf
Institution:Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, 221 00 Lund, Sweden.
Abstract:We have studied the reaction mechanism for the insertion of Mg2+ and Fe2+ into a porphyrin ring with density functional calculations with large basis set and including solvation, zero-point and thermal effects. We have followed the reaction from the outer-sphere complex, in which the metal is coordinated with six water molecules and the porphyrin is doubly protonated, until the metal ion is inserted into the deprotonated porphyrin ring with only one water ligand remaining. This reaction involves the stepwise displacement of five water molecules and the removal of two protons from the porphyrin ring. In addition, a step seems to be necessary in which a porphyrin pyrrolenine nitrogen atom changes its interaction from a hydrogen bond to a metal-bound solvent molecule to a direct coordination to the metal ion. If the protons are taken up by a neutral imidazole molecule, the deprotonation reactions are exothermic with minimal barriers. However, with a water molecule as an acceptor, they are endothermic. The ligand exchange reactions were approximately thermoneutral (+/-20 kJ mol(-1), with one exception) with barriers of up to 72 kJ mol(-1) for Mg and 51 kJ mol(-1) for Fe. For Mg, the highest barrier was found for the formation of the first bond to the porphyrin ring. For Fe, a higher barrier was found for the formation of the second bond to the porphyrin ring, but this barrier is probably lower in solution. No evidence was found for an initial pre-equilibrium between a planar and a distorted porphyrin ring. Instead, the porphyrin becomes more and more distorted as the number of metal-porphyrin bonds increase (by up to 191 kJ mol(-1)). This strain is released when the porphyrin becomes deprotonated and the metal moves into the ring plane. Implications of these findings for the chelatase enzymes are discussed.
Keywords:density functional calculations  iron  magnesium  metalation  porhyrinoids
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号