首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Gradient Chiral Metamirrors for Spin‐Selective Anomalous Reflection
Abstract:Metasurfaces, the phase‐engineered quasi‐2D interfaces, have attracted intensive interest due to their great capabilities in manipulating the reflection, refraction and transmission of electromagnetic waves. Here, we demonstrate the design and realization of a gradient chiral metamirror tailored for spin‐selective anomalous reflection based on the theory of Pancharatnam‐Berry phase. Asymmetric split ring resonators are employed as the basic meta‐atoms for strong circular dichroism. Dispersionless phase discontinuities are achieved by adjusting the orientation of the meta‐atoms, and spin‐dependent absorption is realized by introducing a chiral resonance. Theoretical results predict both broadband beam deflection and spin‐selective absorption for circularly polarized waves in a designer metamirror. Experimental verification of this bifunctional performance is implemented at microwave frequencies and the measured results agree well with the simulation ones. Such chiral metamirrors could pave an avenue towards spin‐selective modulation of the wavefront and might find promising applications in planar electromagnetic devices.
Keywords:absorption  anomalous reflection  circular dichroism  metamirror  metasurface
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号