首页 | 本学科首页   官方微博 | 高级检索  
     


The Origin of Hierarchical Structure Formation in Highly Grafted Symmetric Supramolecular Double‐Comb Diblock Copolymers
Abstract:
Involving supramolecular chemistry in self‐assembling block copolymer systems enables design of complex macromolecular architectures that, in turn, could lead to complex phase behavior. It is an elegant route, as complicated and sensitive synthesis techniques can be avoided. Highly grafted double‐comb diblock copolymers based on symmetric double hydrogen bond accepting poly(4‐vinylpyridine)‐block‐poly(N‐acryloylpiperidine) diblock copolymers and donating 3‐nonadecylphenol amphiphiles are realized and studied systematically by changing the molecular weight of the copolymer. Double perpendicular lamellae‐in‐lamellae are formed in all complexes, independent of the copolymer molecular weight. Temperature‐resolved measurements demonstrate that the supramolecular nature and ability to crystallize are responsible for the formation of such multiblock‐like structures. Because of these driving forces and severe plasticization of the complexes in the liquid crystalline state, this supramolecular approach can be useful for steering self‐assembly of both low‐ and high‐molecular‐weight block copolymer systems.
Keywords:double‐comb diblock copolymers  morphologies  order–  disorder transition  supramolecular interactions  surface active molecules
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号