首页 | 本学科首页   官方微博 | 高级检索  
     


Accelerated Combinatorial High Throughput Star Polymer Synthesis via a Rapid One‐Pot Sequential Aqueous RAFT (rosa‐RAFT) Polymerization Scheme
Abstract:Advanced polymerization methodologies, such as reversible addition‐fragmentation transfer (RAFT), allow unprecedented control over star polymer composition, topology, and functionality. However, using RAFT to produce high throughput (HTP) combinatorial star polymer libraries remains, to date, impracticable due to several technical limitations. Herein, the methodology “rapid one‐pot sequential aqueous RAFT” or “rosa‐RAFT,” in which well‐defined homo‐, copolymer, and mikto‐arm star polymers can be prepared in very low to medium reaction volumes (50 µL to 2 mL) via an “arm‐first” approach in air within minutes, is reported. Due to the high conversion of a variety of acrylamide/acrylate monomers achieved during each successive short reaction step (each taking 3 min), the requirement for intermediary purification is avoided, drastically facilitating and accelerating the star synthesis process. The presented methodology enables RAFT to be applied to HTP polymeric bio/nanomaterials discovery pipelines, in which hundreds of complex polymeric formulations can be rapidly produced, screened, and scaled up for assessment in a wide range of applications.
image

Keywords:high throughput screening  mikto‐arm star polymer  reversible addition‐fragmentation chain transfer (RAFT)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号