首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Short Terahertz Pulse Generation from a Dispersion Compensated Modelocked Semiconductor Laser
Abstract:Dispersion compensation is vital for the generation of ultrashort and single cycle pulses from modelocked lasers across the electromagnetic spectrum. It is typically based on addition of an extra dispersive element to the laser cavity that introduces a chromatic dispersion opposite to that of the gain medium. To date, however, no dispersion compensation schemes have been successfully applied to terahertz (THz) quantum cascade lasers for short and stable pulse generation in the THz range. In this work, a monolithic on‐chip compensation scheme is realized for a modelocked QCL, permitting THz pulses to be considerably shortened from 16ps to 4ps. This is based on the realization of a small coupled cavity resonator that acts as an ‘off resonance’ Gires‐Tournois interferometer (GTI), permitting large THz spectral bandwidths to be compensated. This novel application of a GTI opens up a direct and simple route to sub‐picosecond and single cycle pulses in the THz range from a compact semiconductor source.
Keywords:Quantum cascade laser  Terahertz  Active mode‐locking  Gires‐Tournois interferometer  Short pulse generation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号