首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Scattering Invisibility With Free‐Space Field Enhancement of All‐Dielectric Nanoparticles
Abstract:Simultaneous scattering invisibility and free‐space field enhancement have been achieved based on multipolar interferences among all‐dielectric nanoparticles. The scattering properties of all‐dielectric nanowire quadrumers are investigated and two sorts of scattering invisibilities have been identified: the trivial invisibility where the individual nanowires are not effectively excited; and the nontrivial invisibility with strong multipolar excitations within each nanowire, which results in free‐space field enhancement outside the particles. It is revealed that such nontrivial invisibility originates from not only the simultaneous excitations of both electric and magnetic resonances, but also their significant magnetoelectric cross‐interactions. We further show that the invisibility obtained is both polarization and direction selective, which can probably play a significant role in various applications including non‐invasive detection, sensing, and non‐disturbing medical diagnosis with high sensitivity and precision.
Keywords:Scattering invisibility  free‐space field enhancement  multipolar interferences  all‐dielectric nanoparticles
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号