首页 | 本学科首页   官方微博 | 高级检索  
     


Lasers as Light Sources for Analytical Atomic Spectrometry
Authors:David J. Butcher
Affiliation:1. Department of Chemistry and Physics , Western Carolina University , Cullowhee, North Carolina, USA butcher@email.wcu.edu
Abstract:Abstract

Lasers have advantages compared to conventional light sources, which include high power, a monochromatic emission profile, stability, and rapid tuning across an atomic line. These advantages have resulted in superior analytical figures of merit and methods of background correction compared to conventional light sources. The most widely used lasers for atomic spectrometry include dye laser systems, optical parametric oscillator systems, and diode lasers. Three principal techniques employ lasers as light sources. Laser‐excited atomic fluorescence spectrometry (LEAFS) involves the use of laser light to excite atoms that emit fluorescence and serves as the analytical signal. Laser‐enhanced ionization (LEI) involves laser excitation of atoms to an excited state energy level at which collisional ionization occurs at a higher rate than from the ground state. Diode laser atomic absorption spectrometry (DLAAS) employs a DL as a source to excite atoms in an atom cell from the ground state to an excited state. The analytical signal is involves the ratio of the incident and transmitted beams. Recent applications of these techniques are discussed, including practical applications, hyphenated techniques employing laser‐induced plasmas, and work to characterize fundamental spectroscopic parameters.
Keywords:Dye laser  optical parametric oscillator laser  diode laser  laser‐excited atomic fluorescence  laser‐enhanced ionization  atomic absorption spectrometry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号