Rotating sector study of the gas phase photochlorination of 2,2-dichloro-1,1,1-trifluoroethane |
| |
Authors: | R. F. Cullison R. C. Pogue M. L. White |
| |
Abstract: | The rate constant for the combination of 2,2-dichloro-1,1,1-trifluoroethyl radicals has been measured by applying the rotating sector technique to the gas phase photochlorination of 2,2-dichloro-1,1,1-trifluoroethane at 315°K. The observed value is 6.89 × 1012 cc/mole.sec. This value is in excellent agreement with measurements by Wampler and Kuntz which yielded a temperature-independent value of 6.6 × 1012 cc/mole.sec. The measurement by Wampler and Kuntz was determined from the photochemical system (CF3CCl3 + C-C6H12 + hν). The Arrhenius parameters for the reaction CF3CCl2· + Cl2 → CF3CCl3 + Cl were found to be given by the expression log k3 = 12.10 ? 5830/2.3RT (units in mole, cc, and sec). This is a relatively high activation energy for a chlorination reaction and makes the reaction ever slower than the chlorination of chloroform. |
| |
Keywords: | |
|
|