首页 | 本学科首页   官方微博 | 高级检索  
     


Shallow flow simulation on dynamically adaptive cut cell quadtree grids
Authors:Qiuhua Liang  Jun Zang  Alistair G. L. Borthwick  Paul H. Taylor
Affiliation:1. Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K.;2. Now at School of Civil Engineering & Geosciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, U.K.
Abstract:A computationally efficient, high‐resolution numerical model of shallow flow hydrodynamics is described, based on dynamically adaptive quadtree grids. The numerical model solves the two‐dimensional non‐linear shallow water equations by means of an explicit second‐order MUSCL‐Hancock Godunov‐type finite volume scheme. Interface fluxes are evaluated using an HLLC approximate Riemann solver. Cartesian cut cells are used to improve the fit to curved boundaries. A ghost‐cell immersed boundary method is used to update flow information in the smallest cut cells and overcome the time step restriction that would otherwise apply. The numerical model is validated through simulations of reflection of a surge wave at a wall, a low Froude number potential flow past a circular cylinder, and the shock‐like interaction between a bore and a circular cylinder. The computational efficiency is shown to be greatly improved compared with solutions on a uniform structured grid implemented with cut cells. Copyright © 2006 John Wiley & Sons, Ltd.
Keywords:non‐linear shallow water equations  quadtree  cut cell  Godunov method  approximate Riemann solver
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号