首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Temporal accuracy analysis of phase change convection simulations using the JFNK‐SIMPLE algorithm
Authors:Katherine J Evans  Dana A Knoll
Institution:T‐3, Fluid Dynamics Group, Los Alamos National Laboratory, P.O. Box 1663, MS B216, Los Alamos, NM 87544, U.S.A.
Abstract:The incompressible Navier–Stokes and energy conservation equations with phase change effects are applied to two benchmark problems: (1) non‐dimensional freezing with convection; and (2) pure gallium melting. Using a Jacobian‐free Newton–Krylov (JFNK) fully implicit solution method preconditioned with the SIMPLE (Numerical Heat Transfer and Fluid Flow. Hemisphere: New York, 1980) algorithm using centred discretization in space and three‐level discretization in time converges with second‐order accuracy for these problems. In the case of non‐dimensional freezing, the temporal accuracy is sensitive to the choice of velocity attenuation parameter. By comparing to solutions with first‐order backward Euler discretization in time, it is shown that the second‐order accuracy in time is required to resolve the fine‐scale convection structure during early gallium melting. Qualitative discrepancies develop over time for both the first‐order temporal discretized simulation using the JFNK‐SIMPLE algorithm that converges the nonlinearities and a SIMPLE‐based algorithm that converges to a more common mass balance condition. The discrepancies in the JFNK‐SIMPLE simulations using only first‐order rather than second‐order accurate temporal discretization for a given time step size appear to be offset in time. Copyright © 2007 John Wiley & Sons, Ltd.
Keywords:Newton–  Krylov methods  temporal accuracy  time step convergence  gallium melting  SIMPLE preconditioner  phase change convection
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号