首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simulation of Polymer Aggregates as a Method to Investigate the Solvent Effect on Blend Complexation and the Relative Strength of H‐Bonding Groups in Blends
Authors:Marco Drache  Jens Reichel
Abstract:Simulations of polymer‐solvent and polymer‐polymer aggregates, in which the study of hydrogen bonding plays an important role, have been carried out with two blend systems. The aim was to examine the influence of the solvent on blend complexation and to compare the strength of different hydrogen bonds in a blend system. We quantified the strength of one hydrogen bond in the blend environments. For this we used the EVOCAP software, developed by our institute. It allows the building of large molecular aggregates with realistic and homogeneous densities, with an implemented positioning algorithm of the molecules under consideration and their excluded volume, and a charge equilibration method for the partial charge calculation. In the simulated aggregates the specific interaction energy of the hydrogen atom forming the hydrogen bond was a useful indicator for our studies. Through a direct correlation of this specific‐interaction energy with the strength of the hydrogen bond, we supported the experimental result that, in toluene, complex formation between poly(methyl methacrylate) (PMMA) and PSOH, a hydroxyl‐modified polystyrene, is possible, but not in tetrahydrofuran. Varying the proton‐donor polymer, also a hydroxyl‐modified polystyrene, in blends of poly(vinyl methyl ether) (PVME) with groups of different donor strength, we reconstructed the experimental row of increasing hydrogen‐bond strengths.
Keywords:hydrogen bonds  molecular mechanics  molecular modeling  Monte Carlo simulation  specific interaction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号