首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrophobization and characterization of internally crosslink-reinforced cellulose fibers
Authors:Zohreh Sabzalian  Md Nur Alam  Theo G. M. van de Ven
Affiliation:1. Department of Chemistry, Pulp and Paper Research Centre, McGill University, Montreal, QC, Canada
Abstract:Transforming hydrophilic cellulose fibers into hydrophobic, non-hygroscopic fibers could potentially lead to a variety of new products, such as flexible packaging, self-cleaning films and strength-enhancing agents in polymer composites. To achieve this, softwood cellulose pulp was chemically modified with successive chemical treatments. First the C2 and C3 hydroxyl groups of the glucose units were selectively oxidized by periodate oxidation to reactive dialdehyde units on the cellulose chain, followed by a Schiff base reaction with 1,12-diaminododecane to crosslink the microfibrils within the fiber wall. This was done, because introducing high levels of alkylation resulted in fiber disintegration, which could be prevented by crosslinking. After internal crosslinking a second Schiff base reaction was performed with butylamine. This procedure yielded highly hydrophobic and low-hygroscopic cellulosic materials. The modified cellulose fibers were investigated by a variety of techniques, including Fourier transform infrared spectroscopy, nuclear magnetic resonance, field-emission scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, moisture sorption and water contact angle measurements. The water uptake of the fibers after being modified reduced from 4 to around 1 %. Various reaction conditions were studied for optimum performance.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号