首页 | 本学科首页   官方微博 | 高级检索  
     


Electron transfer of quinone self-assembled monolayers on a gold electrode
Authors:Nagata Morio  Kondo Masaharu  Suemori Yoshiharu  Ochiai Tsuyoshi  Dewa Takehisa  Ohtsuka Toshiaki  Nango Mamoru
Affiliation:

aTsukuri College, Department of Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

bDivision of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Abstract:Dialkyl disulfide-linked naphthoquinone, (NQ-Cn-S)2, and anthraquinone, (AQ-Cn-S)2, derivatives with different spacer alkyl chains (Cn: n = 2, 6, 12) were synthesized and these quinone derivatives were self-assembled on a gold electrode. The formation of self-assembled monolayers (SAMs) of these derivatives on a gold electrode was confirmed by infrared reflection-absorption spectroscopy (IR-RAS). Electron transfer between the derivatives and the gold electrode was studied by cyclic voltammetry. On the cyclic voltammogram a reversible redox reaction between quinone (Q) and hydroquinone (QH2) was clearly observed under an aqueous condition. The formal potentials for NQ and AQ derivatives were −0.48 and −0.58 V, respectively, that did not depend on the spacer length. The oxidation and reduction peak currents were strongly dependent on the spacer alkyl chain length. The redox behavior of quinone derivatives depended on the pH condition of the buffer solution. The pH dependence was in agreement with a theoretical value of E1/2 (mV) = E′ − 59pH for 2H+/2e process in the pH range 3–11. In the range higher than pH 11, the value was estimated with E1/2 (mV) = E′ − 30pH , which may correspond to H+/2e process. The tunneling barrier coefficients (β) for NQ and AQ SAMs were determined to be 0.12 and 0.73 per methylene group (CH2), respectively. Comparison of the structures and the alkyl chain length of quinones derivatives on these electron transfers on the electrode is made.
Keywords:Quinone   Self-assembled monolayer   Electrode   Electron transfer
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号