首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Role for bound water and CH-pi aromatic interactions in photosynthetic electron transfer
Authors:Sacksteder Colette A  Bender Shana L  Barry Bridgette A
Institution:Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, USA.
Abstract:Photosystem I (PSI) is one of two photosynthetic reaction centers present in plants, algae, and cyanobacteria and catalyzes the reduction of ferredoxin and the oxidation of cytochrome c or plastocyanin. The PSI primary chlorophyll donor, which is oxidized in the primary electron-transfer events, is a heterodimer of chl a and a' called P700. It has been suggested that protein relaxation accompanies light-induced electron transfer in this reaction center (Dashdorj, N.; Xu, W.; Martinsson, P.; Chitnis, P. R.; Savikhin, S. Biophys. J. 2004, 86, 3121. Kim, S.; Sacksteder, C. A.; Bixby, K. A.; Barry, B. A. Biochemistry 2001, 40, 15384). To investigate the details of electron transfer and relaxation events in PSI, we have employed several experimental approaches. First, we report a pH-dependent viscosity effect on P700+ reduction; this result suggests a role for proton transfer in the PSI electron-transfer reactions. Second, we find that changes in hydration alter the rate of P700+ reduction and the interactions of P700 with the protein environment. This result suggests a role for bound water in electron transfer to P700+. Third, we present evidence that deuteration of the tyrosine aromatic side chain perturbs the vibrational spectrum, associated with P700+ reduction. We attribute this result to a linkage between CH-pi interactions and electron transfer to P700+.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号