Major factors involved in the inhibition of ultrasound-induced free radical production and cell killing by pre-sonication incubation or by high cell density |
| |
Authors: | Feril Loreto B Kondo Takashi |
| |
Affiliation: | Faculty of Medicine, Department of Radiological Sciences, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan. |
| |
Abstract: | To identify the factors involved in the inhibition of ultrasound (US)-induced free radical production and cell killing by pre-sonication incubation or by high cell density, we used different densities of U937 cells, and with (up to 2 h) or without pre-sonication incubations, the cell suspensions were exposed to 1 MHz US (10% duty factor at 100 Hz pulse rate; intensities 0.1-0.5 W/cm(2) for 1 min). The intensity 0.3 W/cm(2) was used for cell killing experiments and 0.5 W/cm(2) for free radical experiments. Free radical production was determined by electron paramagnetic resonance (EPR)-spin trapping with DMPO while cell killing was determined by assays for lysis, loss of cell viability, apoptosis and necrosis. The results show that at higher cell densities, CO(2) in the medium rapidly increased, with shorter pre-sonication incubation required to attain complete inhibition of both free radical production and cell killing. Cell killing at 0.3 W/cm(2) and free radical production at 0.5 W/cm(2) were both inhibited at 10 million cells/ml without incubation, and at 2 million cells/ml incubated for 2 h before sonication. Level of CO(2) alone could not account for the inhibition; consumption of gases in the medium is also considered in the inhibitory effect of pre-sonication, while suppression of cavitational activities due to the "viscosity effect" is considered a more important factor in the inhibition by high cell density. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|