首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of Ti substitution on hydrogen storage properties of Zr1−xTixCo (x = 0, 0.1, 0.2, 0.3) alloys
Institution:1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China;2. Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;3. China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
Abstract:Zr1−xTixCo (x = 0, 0.1, 0.2, 0.3) alloys were prepared by arc-melting method and the effect of Ti substitution on hydrogen storage properties was studied systematically. Hydrogen desorption pressure-composition-temperature (PCT) measurements were carried out using Sievert's type volumetric apparatus for ZrCo (at 473 K, 573 K and 673 K) and Zr1−xTixCo alloys (at 673 K), respectively. Products after dehydrogenation were characterized by X-ray diffraction (XRD). In addition, the kinetics of Zr1−xTixCo hydride was investigated at 473 K and 673 K, respectively, under hydrogen pressure of 5 MPa. Results showed that Ti substitution for Zr did not change the crystal structure of ZrCo phase. With the increase of temperature from 473 K to 673 K, the extent of disproportionation for ZrCo alloy increased. With Ti content increasing at 673 K, the desorption equilibrium pressure of Zr1−xTixCo-H2 systems elevated and the disproportionation reaction of Zr1−xTixCo alloys was inhibited effectively. Ti substitution decreased the kinetics rate and the effective hydrogen storage capacity of Zr1−xTixCo alloys slightly. Generally speaking, it was found that Zr0.8Ti0.2Co alloy had better anti-disproportionation property with less decrease of effective hydrogen storage capacity which was beneficial to tritium application in the International Thermonuclear Experimental Reactor (ITER).
Keywords:ZrCo-based alloys  Ti substitution  hydrogen storage properties  anti-disproportionation
本文献已被 CNKI ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号