首页 | 本学科首页   官方微博 | 高级检索  
     

基于多线性支持向量机的样本点正确分类与复杂失效方程稳步模拟
引用本文:蒋友宝,黄星星,廖国宇,张建仁. 基于多线性支持向量机的样本点正确分类与复杂失效方程稳步模拟[J]. 计算力学学报, 2015, 32(3): 313-321
作者姓名:蒋友宝  黄星星  廖国宇  张建仁
作者单位:长沙理工大学 土木与建筑学院,长沙,410004
基金项目:国家重点基础研究发展计划(2015CB057705);国家自然科学基金(11102029);长沙理工大学"青年英才"支持计划项目资助.
摘    要:为克服一般响应面方法重构复杂隐式失效方程所需样本数量较多、精度较差的不足,提出了一种基于多线性支持向量机的结构失效方程模拟方法。该方法的显著特点是应用了样本点正确分类技术,因而其求解精度随着样本点数量的增多而稳步趋近于真实失效方程。其主要求解过程为,(1)结合均匀设计方法,生成均匀的紧邻极限状态曲面的失效和可靠样本点。(2)依据样本点向量模和样本点向量间夹角余弦值将总体空间划分成多个子空间,确保每个子空间内的样本点能由一个线性支持向量机完全分开。(3)采用一种基于扩充样本点对的迭代算法不断更新样本点集合,从而逐步修正模拟的多个线性失效方程。算例分析表明,无论失效方程为强非线性函数还是多个失效模式组成的分段函数,该方法的计算精度与效率均较为稳定。这为具有复杂失效方程结构的可靠度分析提供了有益参考。

关 键 词:结构可靠度  支持向量  正确分类  样本点对  均匀设计  失效方程
收稿时间:2014-05-07
修稿时间:2014-08-01

Stable fitting of complex failure functions and correct classifying of sample points based on multiple linear support vector machines
JIANG You-bao,HUANG Xing-xing,LIAO Guo-yu and ZHANG Jian-ren. Stable fitting of complex failure functions and correct classifying of sample points based on multiple linear support vector machines[J]. Chinese Journal of Computational Mechanics, 2015, 32(3): 313-321
Authors:JIANG You-bao  HUANG Xing-xing  LIAO Guo-yu  ZHANG Jian-ren
Affiliation:School of Civil Engineering and Architecture, Changsha University of Science and Technology, Changsha 410114, China;School of Civil Engineering and Architecture, Changsha University of Science and Technology, Changsha 410114, China;School of Civil Engineering and Architecture, Changsha University of Science and Technology, Changsha 410114, China;School of Civil Engineering and Architecture, Changsha University of Science and Technology, Changsha 410114, China
Abstract:To overcome the shortcomings of the current response surface methods,which are less accurate and need a large number of samples to rebuild a complex implicit failure function,a new fitting method of structural failure function is proposed based on multiple linear support vector machines.One of the main features of this method is the application of correct classifying techniques of sample points.Thus,its solution can approximate the real failure function steadily as the number of samples increases.Its main solving steps are:(1) use the uniform design method to generate reliable and failure samples,which are close to the real limit state surface;(2) divide the total space into multiple subspaces based on vector modules and angles of sample points to ensure that the sample points in each space can be classified correctly by a linear support vector machine;(3) establish an iterative algorithm based on additional sample pairs to update sample sets continuously to modify the obtained multiple linear support vector machines.Numerical examples show that this method has a better accuracy and efficiency,no matter the failure function is a highly nonlinear one or a piecewise one due to its multiple failure modes.This method provides a useful basis for the reliability analysis of structure with a complex failure function.
Keywords:structural reliability  support vector  correct classifying  sample pair  uniform design  failure function
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算力学学报》浏览原始摘要信息
点击此处可从《计算力学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号