首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Intramolecular homolytic substitution of sulfinates and sulfinamides--a computational study
Authors:Kyne Sara H  Aitken Heather M  Schiesser Carl H  Lacôte Emmanuel  Malacria Max  Ollivier Cyril  Fensterbank Louis
Institution:School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia. sara.kyne@strath.ac.uk
Abstract:Ab initio and density functional theory (DFT) calculations predict that intramolecular homolytic substitution by alkyl radicals at the sulfur atom in sulfinates proceeds through a smooth transition state in which the attacking and leaving radicals adopt a near collinear arrangement. When forming a five-membered ring and the leaving radical is methyl, G3(MP2)-RAD//ROBHandHLYP/6-311++G(d,p) calculations predict that this reaction proceeds with an activation energy (ΔE(1)(?)) of 43.2 kJ mol(-1). ROBHandHLYP/6-311++G(d,p) calculations suggest that the formation of five-membered rings through intramolecular homolytic substitution by aryl radicals at the sulfur atom in sulfinates and sulfinamides, with expulsion of phenyl radicals, proceeds with the involvement of hypervalent intermediates. These intermediates further dissociate to the observed products, with overall energy barriers of 45-68 kJ mol(-1), depending on the system of interest. In each case, homolytic addition to the phenyl group competes with substitution, with calculated barriers of 51-78 kJ mol(-1). This computational study complements and provides insight into previous experimental observations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号