首页 | 本学科首页   官方微博 | 高级检索  
     


Orthogonal rotation in PCAMIX
Authors:Marie Chavent  Vanessa Kuentz-Simonet  Jér?me Saracco
Affiliation:1. IMB, CNRS, UMR, Universit?? de Bordeaux, 5251, Bordeaux, France
2. Univ. Bordeaux, IMB, UMR 5251, 33400, Talence, France
3. INRIA, 33400, Talence, France
4. Irstea, UR ADBX, 33612, Cestas Cedex, France
5. Institut Polytechnique de Bordeaux, Bordeaux, France
Abstract:Kiers (Psychometrika 56:197–212, 1991) considered the orthogonal rotation in PCAMIX, a principal component method for a mixture of qualitative and quantitative variables. PCAMIX includes the ordinary principal component analysis and multiple correspondence analysis (MCA) as special cases. In this paper, we give a new presentation of PCAMIX where the principal components and the squared loadings are obtained from a Singular Value Decomposition. The loadings of the quantitative variables and the principal coordinates of the categories of the qualitative variables are also obtained directly. In this context, we propose a computationally efficient procedure for varimax rotation in PCAMIX and a direct solution for the optimal angle of rotation. A simulation study shows the good computational behavior of the proposed algorithm. An application on a real data set illustrates the interest of using rotation in MCA. All source codes are available in the R package “PCAmixdata”.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号