首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Visualization of unsteady shock oscillations in the High-enthalpy flow field around double cones
Authors:Jagadeesh  G  Hashimoto  T  Naitou  K  Sun  M  Takayama  K
Institution:1.Dept. of Aerospace Engineering, Indian Institute of Science, 560 012, Bangalore, India
;2.Shock Wave Research Center, Institute of Fluid Science, Tohoku University, 980-8577, Sendai, Japan
;
Abstract:The presence of an adverse pressure gradient, shock/shock interaction and shock wave/boundary layer interaction often induces flow separation around bodies. However, the effect of dissociated flow on separated flow characteristics, especially at hypersonic speeds, is still not clear, and considerable differences are observed between experiments and numerical simulations. In this investigation, the unsteady separated flow features around double cones are visualized in the Shock Wave Research Center (SWRC) free-piston driven shock tunnel at a nominal Mach Number of 6.99 using multiple optical techniques. The time resolved shock structure oscillations in the flow field around double cones (first cone, semi-apex angle = 25°; second cone, semi-apex angles=50°, 65°, 68° and 70°) have been visualized using a high-speed image converter camera (IMACON) at a nominal stagnation enthalpy of 4.8 MJ/kg. In addition, flow visualization studies around the double cone is also carried out using Schlieren and double exposure holographic interferometry in order to precisely locate the separation point and measure the separation length. The presence of a triple shock structure in front of the second cone and a non-linear unsteady shock structure oscillation in the flow field are the significant results from visualization studies on the 25° /65°, 25° /68° and 25°/70° double cones. On the other hand, the flow field around 25° /50° is relatively steady and Type V shock/shock interaction is observed. Illustrative numerical simulation studies are carried out by solving N-S equations to complement the experiments. The simulated flow features around a double cone agree well qualitatively with experiments.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号